大会报告:刘俊教授(加拿大滑铁卢大学)

报告概要

Title: Physics-Informed Neural Network Lyapunov Functions

 

Abstract: One of the longstanding challenges in systems and control is the effective construction of Lyapunov functions for formal system analysis and control. In this talk, we discuss a machine learning framework for learning Lyapunov certificates to address stability and safety problems in systems and control using physics-informed neural networks. Specifically, we obtain neural Lyapunov functions by solving characteristic partial differential equations (PDEs) for these problems with neural networks and derive sufficient conditions for the efficient verification of the learned certificates using satisfiability modulo theories (SMT) solvers. We address approximation error bounds, convergence guarantees of neural approximations, and the formal correctness of neural Lyapunov certificates. The framework is illustrated with examples from nonlinear systems and control, ranging from low- to high-dimensional systems, and shown to outperform traditional sum-of-squares (SOS) approaches in semidefinite programming.

 

Bio: Jun Liu is a Professor of Applied Mathematics and a Canada Research Chair at the University of Waterloo, where he directs the Hybrid Systems Lab. He received his B.S. in Applied Mathematics from Shanghai Jiao-Tong University, M.S. in Mathematics from Peking University, and Ph.D. in Applied Mathematics from the University of Waterloo. After a Postdoctoral Fellowship at Caltech, he was a Lecturer at the University of Sheffield before joining Waterloo in 2015. His research focuses on hybrid systems, control theory, optimization, and machine learning, with applications in robotics and cyber-physical systems. He has received a Marie-Curie Career Integration Grant, a Canada Research Chair (2017–2027), an Ontario Early Researcher Award, and the CAIMS/PIMS Early Career Award. His best paper awards include the Zhang Si-Ying Outstanding Youth Paper Award, the IFAC Nonlinear Analysis: Hybrid Systems (NAHS) Paper Prize, and the Oded Maler Prize (FORMATS Best Paper). Dr. Liu is a senior member of IEEE, a member of SIAM, and a lifetime member of CAIMS, and has served on editorial boards and program committees of several journals and conferences in control and systems theory.

标题:物理信息神经网络李雅普诺夫函数

摘要

在系统与控制领域,一个长期存在的挑战是如何有效构造李雅普诺夫函数,以实现对系统的形式化分析与控制。本报告将介绍一种机器学习框架,该框架利用物理信息神经网络(Physics-Informed Neural Network, PINN) 学习李雅普诺夫凭证(Lyapunov certificate),从而解决系统与控制中的稳定性及安全性问题。
具体而言,我们通过神经网络求解此类问题的特征偏微分方程(Partial Differential Equation, PDE),得到神经网络李雅普诺夫函数;同时,利用可满足性模理论(Satisfiability Modulo Theories, SMT)求解器,推导用于高效验证所学习凭证的充分条件。报告将重点探讨近似误差界、神经近似的收敛性保证,以及神经网络李雅普诺夫凭证的形式化正确性。
该框架将通过非线性系统与控制领域的实例进行说明(实例涵盖低维至高位系统),并证明其在半定规划中性能优于传统的平方和(Sum-of-Squares, SOS)方法。

作者简介

刘军(Jun Liu)是滑铁卢大学(University of Waterloo)应用数学教授、加拿大研究主席(Canada Research Chair),并担任该校混合系统实验室(Hybrid Systems Lab)主任。他于上海交通大学获得应用数学学士学位,于北京大学获得数学硕士学位,于滑铁卢大学获得应用数学博士学位。在加州理工学院(Caltech)完成博士后研究后,他曾在谢菲尔德大学(University of Sheffield)担任讲师,2015 年起加入滑铁卢大学。
其研究方向包括混合系统、控制理论、优化与机器学习,及其在机器人与信息物理系统中的应用。他曾获玛丽・居里职业整合基金(Marie-Curie Career Integration Grant)、加拿大研究主席(2017–2027)、安大略省早期研究者奖(Ontario Early Researcher Award)及加拿大应用与工业数学学会 / 太平洋数学科学研究所早期职业奖(CAIMS/PIMS Early Career Award)。
学术论文奖项方面,他曾获张嗣瀛青年优秀论文奖(Zhang Si-Ying Outstanding Youth Paper Award)、国际自动控制联合会(IFAC)非线性分析:混合系统领域论文奖(IFAC Nonlinear Analysis: Hybrid Systems (NAHS) Paper Prize)及奥代德・马勒奖(Oded Maler Prize,FORMATS 会议最佳论文奖)。
刘博士是 IEEE 高级会员、美国工业与应用数学学会(SIAM)会员、加拿大应用与工业数学学会(CAIMS)终身会员,曾在多个控制与系统理论领域的期刊及会议中担任编委与程序委员会成员。

 

会议日程

2025-10-31至2025-11-04
珠海(主会场)

2025-10-29至2025-10-30

北京(分会场)

轮播图